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We have made substantial advances in elucidating the properties of the suscep-
tibility of the square lattice Ising model. We discuss its analyticity properties,
certain closed form expressions for subsets of the coefficients, and give an algo-
rithm of complexity O(N 6) to determine its first N coefficients. As a result, we
have generated and analyzed series with more than 300 terms in both the high-
and low-temperature regime. We quantify the effect of irrelevant variables to the
scaling-amplitude functions. In particular, we find and quantify the breakdown
of simple scaling, in the absence of irrelevant scaling fields, arising first at order
|T&Tc |9�4, though high-low temperature symmetry is still preserved. At terms
of order |T&Tc | 17�4 and beyond, this symmetry is no longer present. The short-
distance terms are shown to have the form (T&Tc)

p (log |T&Tc | )q with p�q2.
Conjectured exact expressions for some correlation functions and series coef-
ficients in terms of elliptic theta functions also foreshadow future developments.

KEY WORDS: Ising susceptibility; high-temperature series; low-temperature
series; scaling function; irrelevant variables; differentiably finite functions; scaling
fields.

1. INTRODUCTION

Since Onsager's(1) celebrated solution of the Ising model free energy in
1944, followed by Yang's(2) proof of Onsager's result for the spontaneous
magnetization in 1952, almost half a century has passed during which time
many, if not most of the world's most able mathematical physicists have
devoted themselves to the problem of elucidating the susceptibility.
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Attempting to list all these contributions would produce a bibliography of
prohibitive length, and one that would inevitably commit many sins of
omission. Therefore rather than attempt this, we will only make mention of
those papers that have directly motivated our work here, and crave the
forgiveness of those who we have inadvertently offended.

While much of the notation for describing the square lattice Ising
model is standard, we begin by defining our notation here both for the
benefit of the more casual reader and to emphasize those cases where we
deviate from convention. The interactions in the two perpendicular direc-
tions are taken to be

K=;J, K$=;J$ (1.1)

but we also often set K$=K to discuss the isotropic lattice. For high tem-
peratures, s=sinh 2K and s$=sinh 2K$ are appropriate variables for series
expansions, (3) while for low temperatures, we use 1�s and 1�s$ instead.
Thus,

s*=sinh 2K*=1�sinh 2K=1�s, s$*=sinh 2K$*=1�sinh 2K$=1�s$

(1.2)

In many cases, high-temperature and low-temperature formulas can be
obtained from each other by Kramers�Wannier duality with a simple inter-
change of primes and stars. The critical temperature is defined by the con-
dition s$=s*.

A conventional high-temperature variable is v=tanh K, while an
often-used low-temperature variable is u=exp(&4K ). The translations
between these and our variables are

s=sinh 2K=2v�(1&v2) (1.3)

and

s*=2u1�2�(1&u) (1.4)

and similarly for the primed variables.
In studying the critical behavior, we will use both the variable

t=1&Tc �T and more frequently

{=(1�s&s)�2 (isotropic) (1.5)

to parameterize deviations from the critical temperature. To leading order,
{=2Kc - 2 t.
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An elliptic parameterization will be useful, and to that end we define
the elliptic modulus,

k={s$�s*=ss$
s*�s$=1�ss$

for T>Tc

for T<Tc
(1.6)

Let _i, j be the spin at lattice site (i, j) and define the two-point function

C(M, N )=(_0, 0_M, N) (1.7)

In terms of the correlation functions the susceptibility is

;&1/=: : (C(M, N )&M2) (1.8)

where M is the magnetization.
In 1956 Syozi and Naya(4) presented an approximation to the

anisotropic high-temperature susceptibility which gave the correct critical
point, correct critical exponent, an amplitude estimate that was wrong by
less than 10, and reproduced the first 8 terms of the series expansion. It
was also exact along the disorder line.4 In 1976 a celebrated paper by Wu,
McCoy, Tracy and Barouch(6) showed how the high- and low-temperature
expansions of the susceptibility could be understood in terms of a multi-
particle expansion, with an odd number of particles being appropriate at
high temperatures and an even number at low temperatures. With this
interpretation it became clear that the result of ref. 4 was just the lowest
order, or one-particle approximation to the susceptibility.

In terms of the elliptic modulus k (1.6) the high- and low-temperature
susceptibilities can be written

;&1/+=k&1�2(1&k2)1�4 :
�

l=0

/̂ (2l+1) (1.9)

and

;&1/&=(1&k2)1�4 :
�

l=1

/̂(2l ) (1.10)
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respectively, where /̂( j) is the sum over all lattice separations of the j-par-
ticle contribution to the two-point function, and was first given(6) as a
2j-fold multiple integral. It was subsequently shown that this integral can
be reduced to a j-fold integral of the form

/̂( j)=
k j�2

(2?) j j ! | du1 } } } | duj (G( j))2 f ( j) (1.11)

where G( j) is a fermionic determinant and f ( j) is an algebraic function. This
reduction has been achieved by various routes.(3, 7�11) The factor, G( j),
appearing in the integrand, which can be expressed in terms of Pfaffians, (7)

has been found to have a product form, first by Palmer and Tracy in the
low temperature regime, (8) and then independently by Yamada in both the
high- and low-temperature regimes.(9, 10) From the product form it readily
follows that the first non-zero term in (1.11) is 2 j(1& j)k j2�2. From the
original expression one could only conclude that each integral entered at
order k j�2, so clearly massive cancellations occur. While this comes as a
surprise if handling the integral(6) directly, it follows straightforwardly(11)

from the product form.
In terms of the elliptic modulus, the first terms in the high-and low-

temperature expansions for the isotropic (K=K$) susceptibility are

/̂ (1)
iso =

k1�2

(1&k1�2)2 (1.12)

and

/̂ (2)
iso =

(1+k2) E&(1&k2) K
3?(1&k)(1&k2)

(1.13)

where E and K are the complete elliptic integrals5 of the second and first
kind respectively. Anisotropic versions of these formulae are given in Sec-
tion 3. Simple forms for higher terms in the expansion are not known.

In ref. 12 one of us gave compelling evidence that unlike the free-energy
and spontaneous magnetization, the anisotropic susceptibility /(K, K$) is not
differentiably finite. A series in n variables, f (z), is said to be differentiably
finite or D-finite if and only if it satisfies a system of n partial differential
equations of the form

Pi, 0(z) f (z)+Pi, 1(z)
�

�zi
f (z)+ } } } +Pi, ki

(z)
�ki

�zki
i

f (z)=0 (1.14)
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where the Pi, j (z) are polynomials and for each i=1,..., n, Pi, ki
(z) is not the

null polynomial, see, e.g., Proposition 2.2 in ref. 13. Thus the expression for
the susceptibility was shown to be in a different��and less tractable��class
of function than other known properties of the Ising model. The evidence
for this was based on the observation (not proved) that the anisotropic
susceptibility /(v, v$), as a function of v with v$ fixed has a natural bound-
ary on the unit circle |v|=1.

For the isotropic susceptibility, another of us(3, 11) provided strong con-
firmation (though again, not a proof ) of this observation by showing that
the circle |s|=1 in the complex s=sinh 2K plane is a natural boundary.
These two observations are discussed further in Section 3.2, following a
discussion of the general anisotropic case in Section 3.1.

In Section 3.3 we also prove the important result that while /(k) is not
D-finite, /̂( j)(k) is D-finite for all j.

Two other directions in which we have achieved substantial progress
are in the generation of series coefficients for the individual series /̂( j),
continuing work initiated in refs. 3 and 11, and even greater progress in
obtaining the coefficients of the total series / using nonlinear partial dif-
ference equations for the correlation functions.(14�16)

In order to generate the series for the total susceptibility /+ or /&

without computing separately the j-particle contributions, a more efficient
method of series generation is obtained by first returning to the expression
(1.8) of the susceptibility as the sum over all lattice separations of the two-
point correlation functions.

In the scaling limit, the two-point functions were found to satisfy a
nonlinear differential equation of Painleve� type(6) which was then solved to
give the leading scaling terms |{|&7�4 and |{| &3�4 exactly.(6, 17) In 1980,
a discrete analogue of this equation was discovered by McCoy and Wu(14)

which holds for the two-point functions of the lattice Ising model at
arbitrary temperature, and which reduces to the Painleve� equation in the
scaling limit. In the same year, a simple set of partial difference equations
was derived by Perk, (15) which reproduced the equation of McCoy and
Wu and provided an additional equation. Also in the same year, an
unrelated set of difference equations, which can be used to compute the
correlation functions on the diagonal, M=N, was obtained by Jimbo and
Miwa.(16) Many of these developments are described in some detail in
ref. 18.

The difference equations are valid for arbitrary temperature and were
used by Kong, et al.(19) to obtain exactly the leading ``short distance''
constant terms in the susceptibility both at the ferromagnetic and anti-
ferromagnetic points at T=\Tc . This work was later extended to give the
amplitudes of the term { log |{|.(20, 21) Here we dramatically extend that
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work by obtaining all terms in the ``short-distance'' part6 Bf�af (see (1.16)
and (1.17)) of the susceptibility to O({14). Details necessary for the genera-
tion of C(M, N ) appear in Section 4 while in Section 6.1 we describe the
numerical analysis of the C(M, N ) that leads us to conclude that the
``short-distance'' terms have the form

Bf�af= :
�

q=0

:
w- q x

p=0

b ( p, q)
f�af {q(log |{| ) p (isotropic) (1.15)

Although clearly nonanalytic at {=0 we have denoted these ``short-dis-
tance'' terms in (1.15) by B, as a further reminder that they also include the
analytical ``background.'' The actual coefficients in (1.15) can be found in
the Appendix.

The quadratic difference equations of Perk(15) can also be used to
generate high- and low-temperature series for / and as shown in Section 4
the series coefficients can be obtained in polynomial time!

While some people have expressed the view that a polynomial time
algorithm for the computation of the series coefficients constitutes a solu-
tion, it is clearly preferable to have a closed form expression. Nevertheless,
a polynomial time algorithm is equivalent to a complete solution if one
seeks only the series coefficients, as to expand any closed form expression
also takes polynomial time. As the history of the development of these key
nonlinear recurrences described above shows, the ingredients for such an
algorithm have existed unexploited in the literature for many years.

Analysis of the resulting series of hitherto unimaginable length com-
bined with the ``short-distance'' knowledge contained in (1.15) leads to a
solidly based conjecture specifying completely the remaining ``scaling'' part
of the susceptibility / of the isotropic Ising model. Near the anti-ferro-
magnetic point the ``short-distance'' terms are complete and we simply have
for T>Tc

;&1/af=Baf (isotropic) (1.16)

Near the ferromagnetic point we conjecture (for T>Tc or T<Tc)

;&1/\=C0\
(2Kc - 2)7�4 |{|&7�4 F\+Bf (isotropic) (1.17)
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where the scaling-amplitude functions F\ have (possibly asymptotic)
expansions in integer powers of { without any of the powers of log |{|
present in Bf�af . The leading terms are

F\=1+{�2+5{2�8+3{3�16&23{4�384&35{5�768+ f (6)
\ {6

+O({7) (isotropic) (1.18)

where f (6)
+ { f (6)

& . In fact the breakdown in equality is dramatic, and we
estimate that f (6)

+ =&0.1329693327 } } } , and f (6)
& =&6.330746944 } } } , where

more accurate values of these and further terms in (1.18) through order {15

are given in the Appendix. In Section 6.2 we describe the ``short-distance''
subtraction and analysis on which the assumed form of the expansion of
the scaling-amplitude function F\ (1.18) is based, while the analysis leading
to the numerical values of the coefficients in (1.18) is sketched in Section 6.3.

Aharony and Fisher(24, 25) have predicted a scaling-amplitude function
F(A6F) that is equal above and below Tc on the assumption that the
Ising model critical region can be described entirely by two nonlinear scal-
ing fields. Our exact result (1.18) is clearly different and furthermore the
explicit expansion (cf. Eqs. (22)�(24) in ref. 11)

F(A6F)=1+{�2+5{2�8+3{3�16&11{4�192&17{5�384

+97{6�3072+O({7) (1.19)

differs from (1.18) at order {4. This is unequivocal evidence for the presence
of at least one, and almost surely two, irrelevant operators.7 There is
further possible evidence for irrelevant operators in the ``short-distance''
terms (1.15) which contain powers of log |{| beyond the first starting at
{4(log |{| )2, and thus are not of the ``energy'' form given by the nonlinear
field analysis.

An important numerical study investigating corrections to scaling was
that of Gartenhaus and McCullough(22) who confirmed the F(A6F) form
in (1.19) through O({3) and provided a good estimate of the term linear in
{ in Bf in (1.17). Estimates of terms to O({2 log |{| ) in Baf in (1.16) were
obtained in ref. 23. An attempt(11) to go beyond this using longer series
than available in ref. 22 was inconclusive other than to indicate the
necessity of terms beyond that predicted by Aharony and Fisher.(24, 25)

Our numerical work began in part as a modest attempt to improve on
ref. 11 but expanded to where it now clearly quantifies the effect of non-
linear scaling fields(24) as well as irrelevant operators. As anisotropy is a
marginal operator, extending the present calculation to the anisotropic
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square lattice would, we expect, be extremely helpful in better understand-
ing the effect of the irrelevant operator(s) we have identified. Both this and
a study of the susceptibility on the triangular and hexagonal lattices are
projects we hope to tackle in the near future.

The layout of the paper is as follows. In Section 2 we define the model
and give some useful parameterizations. In Section 3 we show how the key
integrals referred to above may be simplified, and provide a short proof of
the assertion that /̂( j), so defined, is D-finite, even though, as we have seen,
/ is presumably not. In Section 4 the computation of the susceptibility
series from the correlation functions by means of nonlinear partial differ-
ence equations is shown to be achievable in polynomial time. In Section 5
we first discuss the isotropic series in k, and then the q series form of the
susceptibility. In this subsection some regularity features of the coefficients
are discovered and the consequences partially developed. In Section 6 we
summarize our numerical work, state our conjecture giving the complete
analytic structure of the isotropic susceptibility, and quantify the effect of
irrelevant variables in the scaling fields. Finally, in Section 7 we review
scaling theory as it applies to the two-dimensional Ising model, and comment
on the relevance of our results to this theory and to the renormalization
group. The high- and low-temperature series for /iso are given on the
WWW at site www.ms.unimelb.edu.au�ttonyg.

2. DEFINITIONS AND NOTATION

In this section of the paper it will be convenient to formulate the
general anisotropic model. Our later numerical work is confined to the
isotropic model.

The complementary modulus of the elliptic modulus k (1.6) is given by
k$=- 1&k2. Here the prime is not related to the anisotropy. The moduli,
k and k$, are related to the elliptic nome, q, by

k=\%2(0, q)
%3(0, q)+

2

, k$=\%4(0, q)
%3(0, q)+

2

(2.1)

The connection between the two moduli yields a well-known theta function
identity. (See Section 13.20 of Bateman(26) for these and other formulas.)

In terms of these variables the magnetization takes a particularly simple
form(27)

M=(1&(ss$)&2)1�8=k$1�4= `
�

n=1

1&q2n&1

1+q2n&1 (2.2)

for T<Tc , and 0 otherwise.
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The theta functions introduced above have useful infinite sum and
product forms, which we will subsequently use. For zero argument these
are

%2(0, q)=2 :
�

n=0

q(n+1�2)2
=2q1�4 `

�

n=1

(1&q2n)(1+q2n)2 (2.3)

%3(0, q)=1+2 :
�

n=1

qn2
= `

�

n=1

(1&q2n)(1+q2n&1)2 (2.4)

%4(0, q)=1+2 :
�

n=1

(&1)n qn2
= `

�

n=1

(1&q2n)(1&q2n&1)2 (2.5)

Thus,

k1�4=- 2 q1�8 `
�

n=1

1+q2n

1+q2n&1 , k$1�4= `
�

n=1

1&q2n&1

1+q2n&1 (2.6)

In the elliptic parameterization, one variable is taken to be either k or q.
We take the other variable to be the anisotropy parameter. Onsager(1) used
the variable a defined by

sn ia={is*
is$

for T>Tc

for T<Tc
(2.7)

We will also need the related variable

sn ia$={i�s$
i�s*

for T>Tc

for T<Tc
(2.8)

In some contexts, it will be useful, following ref. 19, to use instead the
variables : and :$ defined by

cot :=&i - k sn ia=- s$s*=- s$�s (2.9)

cot :$=&i - k sn ia$=- 1�(s$s*)=- s�s$ (2.10)

Obviously cot :=tan :$. The isotropic values of these variables are
sn ia=sn ia$=i�- k and :=:$=?�4.

We observe that q1�2=x where x is the variable of ref. 27, defined by

e&2K=x1�2 `
�

n=1

(1&x8n&7)(1&x8n&1)
(1&x8n&5)(1&x8n&3)

(2.11)
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in which the spontaneous magnetization has a simple product form. The
elliptic modulus of ref. 27 is related to our k by a Landen transformation
[ref. 28, Section 15.6].

In ref. 27 it was also noted that the first terms of the isotropic (K=K$)
high-temperature susceptibility have a simple product expression, which
breaks down at order q8�4. This is explained by the expansion of the high-
temperature susceptibility in multi-particle states described in the Introduc-
tion. The contribution of one-particle states has a product form, and the
first three-particle state contributes at order q8�4. This one-particle product
form is

/̂ (1)
iso=q1�4 `

�

n=1

(1+qn�4)2 (1&q4n)2

(1&qn�4)2 (1+qn)2 =
q1�4

%3(0, q)
`
�

n=1

(1+qn�4)2 (1&q2n)3

(1&qn�4)2

(2.12)

(Strictly speaking the product form above is not the product form of ref. 27
which actually breaks down only at order q9�4. They differ by a factor
which first contributes at order q8�4 and the absence of this factor in ref. 27
exactly compensates for the addition of the first term of /̂(3)

iso .)
Attempts to do the same for the low-temperature series have failed as we

do not know of a product form for /̂ (2)
iso . The function K has one, namely

K= 1
2?%2

3(0, q) (2.13)

while the function E is given in terms of q by the formula(26)

E=
%4

3(0, q)+%4
4(0, q)

3%4
3(0, q)

K&
1

12K
}
%1$$$(0, q)
%$1(0, q)

(2.14)

3. INTEGRAL FORMULAE FOR /̂( j )

In this section we present integral expressions for the /̂( j) and show
that they define D-finite functions.

3.1. Trigonometric Form of Integrals

We will start with the form given by Yamada(9, 10, 29�31) for the j-par-
ticle contribution /̂( j) in terms of elliptic variables, and derive from it an
expression in terms of trigonometric�hyperbolic variables. The integral
expression is

/̂( j)=
k j�2

(2?) j j ! |
4K

0
du1 } } } |

4K

0
duj (G( j))2 1+> j

n=1 xn

1&> j
n=1 xn

}
1+> j

n=1 zn

1&> j
n=1 zn

(3.1)
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where the modulus of the complete elliptic integral K is k, and this same
modulus is assumed in all Jacobi elliptic functions which appear below.
Considered as a function of one of the un , the integrand has a single simple
pole on the real axis which derives from the last factor in the integrand.
The contour of integration is deformed in the vicinity of the pole so that
only half the residue is taken. The function G( j) can be written as the
product

G( j)= `
1�m<n� j

hmn (3.2)

and zn , xn , and hmn are given by

zn=ei|n=
sn 1

2 (un+ia$)
sn 1

2 (un&ia$)
=&

sn ia$ cn un+cn ia$ sn un

sn ia$ dn un&dn ia$ sn un

xn=e&#n=k sn
1
2

(un+ia$) sn
1
2

(un&ia$)=k
cn ia$&cn un

dn ia$+dn un
(3.3)

hmn=&- k sn
1
2

(um&un)

Note that the trigonometric�hyperbolic variables, |n , and #n are related to
the elliptic variables, un and a$ by the functional equation

exp(\ 1
2 i|n& 1

2#n)=- k sn 1
2 (un\ia$) (3.4)

The choice of a$ rather than a as anisotropy parameter is arbitrary because
of the symmetry under interchange of horizontal and vertical lattice axes.
Choosing a$ at this point results in expressions for |n and #n which are
equivalent to those of Onsager.

The mapping between the elliptic parameterization and the tri-
gonometric�hyperbolic one was described in ref. 11 for the isotropic case.
The formulas below are a generalization of this mapping. It is simpler to
use the trigonometric parameterization than it is to use the elliptic
parameterization for numerical series generation.

The variables |n and #n defined above satisfy the identities given in
Appendix 2 of Onsager's paper, (1)

cosh #n=(cn ia dn un&k dn ia cn un)�Mn (3.5)

sinh #n=&ik$2 sn ia�Mn (3.6)

&cos |n=(dn ia cn un&k cn ia dn un)�Mn (3.7)

sin |n=k$2 sn un �Mn (3.8)
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with

Mn=dn ia dn un&k cn ia cn un (3.9)

Notice that it is a which appears in these formulas rather than a$. The map-
ping from the variables un and a to the variables |n and #n is conformal,
as is seen from the formulas, also given by Onsager

&�|n ��un=�#n ��a=k$2�Mn=i sinh #n �sn ia
(3.10)

�#n ��un=�|n ��a=k$2k sn ia sn un �Mn

Finally, Onsager gives the functional equation

cot 1
2 (|n&i#n)=(1+k) sc 1

2 (un+ia) nd 1
2 (un+ia) (3.11)

To make the change of variables, we first note that ,n=? corresponds
to un=0, and ,n=0 corresponds to un=2K. Using Eq. (3.10), we see that

|
?

&?
d| cot :�sinh # } } } =- k |

4K

0
du } } } (3.12)

which implies

/̂( j)=
cot j :

j! |
?

&?

d|1

2?
} } } |

?

&?

d|j&1

2? \ `
j

n=1

1
sinh #n+

_\ `
1�i<k� j

hik+
2 1+> j

n=1 xn

1&> j
n=1 xn

(3.13)

The condition |1+ } } } +|j=0 mod 2?, which results from having performed
one of the integrations, is assumed. In terms of |n , k and :, the quantities
xn and sinh #n can be expressed as

xn=cot2 :[!&cos |n&- (!&cos |n)2&(cot :)&4] (3.14)

sinh #n=cot2 : - (!&cos |n)2&(cot :)&4 (3.15)

with

!=(1+1�(k cot2 :))1�2 (1+k�cot2 :)1�2

=(1+(s$)&2)1�2 (1+(s*)&2)1�2 (3.16)
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In the isotropic case, these reduce to

xn=s+s&1&cos |n&- (s+s&1&cos |n)2&1 (3.17)

sinh #n=- (s+s&1&cos |n)2&1 (3.18)

Here s=- k for high-temperature and s=1�- k for low temperature,
although the distinction is irrelevant as the dependence of the integrand on
s and 1�s is symmetric. Finally

hik=cot :
sin 1

2 (|i&|k)
sinh 1

2 (# i+#k)
=

1
cot :

sinh 1
2 (#i&#k)

sin 1
2 (|i+|k)

(3.19)

=
2(xixk)1�2 cot : sin 1

2 (|i&|k)
1&xi xk

(3.20)

When j=1 or j=2, the integrals can be rewritten in terms of known
functions as was noted in the introduction for the isotropic case. When
j=3 Glasser(32) showed that the integrals can be written as an integral
involving the square root of a polynomial of degree higher than 4. Such
integrals are often called hyperelliptic integrals, and are a special case of
Abelian integrals.

The corresponding anisotropic expressions are

/̂(1)=
1

(k1�2&k&1�2)2 [2 csc 2:+- (k1�2&k&1�2)2+4 csc2 2:] (3.21)

/̂(2)=
k1�2

1+k
- (k1�2&k&1�2)2+4 csc2 2: /̂ (2)

iso (3.22)

As we show in Section 5, we can say more about the general form
of the expansion, based on inspection of the long series published by
Nickel, (3, 11) as well as more recent extensions reported here, giving hope
that there is still more regularity to be found.

3.2. Natural Boundaries

As mentioned in the introduction, there were observations, first in
ref. 12 and then in refs. 3 and 11, that strongly suggested the susceptibility
of the Ising model is a function with a natural boundary unlike the free-
energy or magnetization. We expand and clarify those observations here in
the light of our new knowledge of the general anisotropic case discussed in
Section 3.1 and the additional numerical work on the isotropic limit
described in Section 6.
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First, we expect that as described in ref. 3, the /( j) given by the
integrals (3.1) multiplied by the factors outside the summation in Eqs. (1.9)
or (1.10) will be singular at the symmetry points of the integrand and
where the denominator factor 1&> j

n=1 xn vanishes. The symmetry point
condition requires all |n to be equal and given by |n=|=2?m$�j, m$=
1, 2,..., j. The vanishing of the denominator factor requires the xn , now all
equal, to be given by xn=x=exp(2?im�j), m=1, 2,..., j. Equivalently, from
the explicit formula (3.14),

cot2(:)(!&cos(2?m$�j))=cos(2?m�j) (3.23)

With cot2 (:)=s$�s from (2.9) and ! given by (3.16), we find (3.23) can be
reduced to

cosh(2K ) cosh(2K$)&sinh(2K ) cos
2?m

j
&sinh(2K$) cos

2?m$
j

=0 (3.24)

with m, m$=1, 2,..., j as discussed above. It will be noted that the left-hand
side of (3.24) is the denominator in the Onsager integral for the free-energy
and thus we find the (to us) surprising result that the singularity of /( j),
a property of the Ising model in a magnetic field, is intimately connected
with a property in zero field.

The full /, being a sum of /( j), will naively be expected to be singular
at a dense set of points and thus have the Onsager line (3.24) as a natural
boundary. The presence of natural boundaries has implications for expan-
sions about the physical singularity points s=\1 that are necessary to
understand corrections to scaling. We briefly explore some of these implica-
tions but restrict ourselves for simplicity to the ferromagnetic point s=1 in
the isotropic model. We also make the plausible assumption that the
singularity in each /( j) closest to {=0 is the most important for determin-
ing, in expansions of /, the { p large p asymptotics and this considerably
simplifies the discussion.8

Let {j=i sin %j be that singularity in /( j) that is closest to the
ferromagnetic {=0; %j is fixed by cos %j=(1+cos ,j )�2 with , j=2?�j.
Choose the branch-cut arising from this singularity to lie along the
imaginary { axis and directed away from {=0. Take {=iT to be a point
on the branch-cut. Provided the (positive) deviation

$%j=arcsin T&%j (3.25)
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is not too large, the discontinuity across the cut can be estimated from the
linearized singularity equations (14) in ref. 3 and (12) in ref. 11. For j>2
a more general result that includes the first order correction is

Disc(/( j))=&Cj i j2�sin2 ,j[$%j sin % j �sin2 , j]
( j2&3)�2

__1+$%j sin %j { cos %j

4 sin2 %j
+

j 2&4
8 cos %j (1+cos %j )

&
1
2=+O($%2

j )&
(3.26)

where

Cj=2 - 2(2�?) ( j&3)�2 ( j�2) ( j2&4)�2 \ `
j

m=1

1(m)+<1(( j 2&1)�2)

r3.7655j &1�122 j exp(& j 2�4) (3.27)

The last equality is valid only in the large j limit. To obtain the discon-
tinuity in say /+ , we must first sum the discontinuities in /( j), j odd, and
this we can crudely estimate by integrating over j, keeping only the leading
exponential factors in (3.25) and (3.26) and making a small angle
approximation as well. Essentially the same formula is obtained for the
discontinuity in /& on summing over j even; in either case we find

Disc \:
j

/( j)+t|
2?�T

- 2 ?�T
dj[(Tj�(- 2 ?)&1)�(2 - e)] j 2�2 (3.28)

where the sum is over j odd or j even, and the lower limit is simply the
restriction to those j values that contribute, while the upper limit roughly
defines the limit of validity of the linearized approximation. The precise
value of this limit is not important since the integrand has a maximum well
below the limit. For large j only the maximum of the integrand matters and
(3.28) reduces to

Disc(/)texp(&39.76�T2) (3.29)

in which the numerical coefficient of 1�T2 is ?2x3�(2(x&1)) with x the
smallest real solution of 2 log((x&1)�2)+1�(x&1)=0. Keeping terms
such as the correction term in (3.26) and the 2 j in (3.27) in the steepest
descent analysis lead to O(1�T) corrections to the exponent in (3.29) so we
conjecture that the right hand side of (3.29) is exactly the leading exponen-
tial. It is interesting that the discontinuity (3.29) is similar to that found in
weak coupling field theory expansions, but the mechanism producing the
cut here does not seem to be related in any way to instantons.
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The additional singularities that / has at {=0, namely terms such as
the divergent ``scaling'' |{|&7�4 or the ``short-distance'' powers of log |{| , are
a complication we do not know how to handle in any rigorous fashion.9 As
a consequence we will simply ignore them and make the simplest, yet
reasonable, assumption that they make an additive contribution not rele-
vant for understanding the effect of the natural boundary. Then the cut
discontinuity (3.29) would imply a divergent behavior in the { expansion
of /. That is to say, the coefficient of { p in the limit p � � will diverge as
1( p�2)�a p�2 with ar39.76. This follows from a contour integral around the
origin distorted to run on either side of the cut imaginary axis. The
contribution of the cut discontinuity to the coefficient, Cp , of { p in the
expansion is then

Cp B | dT�T p+1 exp(&a�T2)t1( p�2)�a p�2 (3.30)

We know little about the cut discontinuity on the circle |s|=1 other
than what we have deduced near s=1 as given by (3.29). However, the fact
that the amplitudes of the singularities of /( j) on |s|=1 vary dramatically
with order j almost certainly implies there will be no cancellation of
singularities in the sum of /( j) that defines /. Furthermore, the variation
with order means that there is no length scale at which, as one approaches
the circle of singularities |s|=1, /iso can be smooth. It is these two points
taken together that we consider overwhelming evidence that, in the
isotropic case at least, / has a natural boundary that is the entire |s|=1
circle. We do not imply by this that all points on the circle are equally
``singular.'' As argued above, the existence of an asymptotic expansion
about s=1 seems likely. A very different situation arises at a point such as
s=i. While the singularity in /( j) on the circle s=exp(i%) nearest s=1 lies
at a distance 2%=O(1�j) for large j, the corresponding nearest distance
from s=i is 2%=O(1�j 2). Furthermore this latter singularity is larger in its
leading amplitude than the former by a factor roughly j ( j 2)�2. The reduction
in distance and dramatic increase in amplitude suggests that an asymptotic
expansion about s=i is not possible, but this has not been proved.
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For the anisotropic case we have not analyzed (3.1) in detail so we do
not have the necessary amplitude information to make the same claim
directly. However, we can take the extreme anisotropic limit of s$
infinitesimal (but not 0) and find that the Onsager line (3.24) has now
come very close to the circle |v|=1. At this point we can connect to the
work in ref. 12. There it was observed that if /(K, K$) was written as

/(v, v$)=: Hn(v) v$n (3.31)

the Hn would be singular at a dense set of points on |v|=1 as n � �.
Furthermore, if as in the discussion above, v$ is infinitesimal (but not 0) the
amplitudes of the singularities vary dramatically with order n and the same
conclusion as in the isotropic case is reached. Given that the Onsager line
(3.24) is a natural boundary in two extremes, it seems highly probable that
it is also a natural boundary at all intermediate anisotropy values.

We conclude this section by contrasting the above behavior of the
susceptibility with that of the free-energy and magnetization which are only
singular at an isolated set of points, not a dense set. This is precisely what
one expects for a D-finite function, as in that case we have the following.10

Theorem 1. Let f (x, y)=�n�0 ynHn(x) be a D-finite series in y
with rational coefficients. For n�0, let Sn be the set of poles of Hn(x); let
S=�n Sn . Then S has only a finite number of accumulation points.

This is observed in practice. The anisotropic magnetization and free-
energy each have exactly one accumulation point, (33) while the (non-D-
finite) susceptibility appears to have an infinite number.(12)

3.3. /( j) Is D-finite

This remarkable result, that /( j) (or equivalently /̂( j)) is D-finite while
/ is not, follows from the results of Lipshitz(13) (see also Zeilberger(34)),
who gives several basic definitions and theorems concerning D-finiteness of
series in several variables. The integrand of the trigonometric�hyperbolic
form of /̂( j) is an algebraic function of the variables cj=cos |j and k1�2, and
is thus a D-finite function in these same variables. Then by Theorem 2.7 of
ref. 13, integrating over one or more variables preserves D-finiteness which
implies the result. The term D-finite is synonymous with holonomic in much
of the literature.

Kashiwara and Kawai(35) have shown that any Feynman diagram is
holonomic, whereas an infinite sum of such diagrams may not be. This
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is just the phenomenon we observe here. At first glance it appears that
Kashiwara's definition of holonomic differs from that used here, but this is
not so. The point is that the definition of D-finite functions of more than
one variable requires that the underlying system of partial differential equa-
tions be such that only a finite number of initial conditions are needed to
specify the function. Such systems are called ``maximally over-determined''
or ``holonomic'' in the analysis literature. In the single variable case, the
question of a finite number of initial conditions is clearly automatically
satisfied.

Motivated by the above observation, we have attempted to find linear
differential equations with polynomial coefficients in k1�2, or equivalently,
linear recurrences for the series coefficients, of /̂ (3)

iso and /̂ (4)
iso . With the

available series of order k257�2 and k62 respectively, calculated using the
methods of numerical integration described in refs. 3 and 11, we have ruled
out any such recurrences of depth 14 with coefficients of degree 15 for /̂ (3)

iso ,
and of depth 6 with coefficients of degree 7 for /̂ (4)

iso . Thus while these func-
tions are provably D-finite, it is clear that the generating differential equa-
tion will be a fairly cumbersome object.

We have also attempted to fit these series as polynomials in the
complete elliptic integrals K and E with polynomial coefficients in k and
obtained similar negative results.

4. CORRELATION FUNCTIONS AND
DIFFERENCE EQUATIONS

In this section we give details of our more efficient method of series
generation based on summing the correlation functions, obtained by means
of nonlinear recurrences, as outlined in the Introduction.

The equations we used for generation of the very long series are the
ones given by Perk.(15) Here we present a slight generalization due to
McCoy and Wu(36) which keeps track of the separate multi-particle com-
ponents. The expansions of the two-point correlation functions in multi-
particle components are analogous to the corresponding expansions (1.9)
and (1.10) for the susceptibility

C(M, N; *)={
k&1�2(1&k2)1�4 :

�

n=0

*2n+1C� (2n+1)(M, N )

(1&k2)1�4 :
�

n=0

*2nC� (2n)(M, N )

for T>Tc

for T<Tc

(4.1)
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with C� (0)(M, N )=1 and for j>0

C� ( j)(M, N )=
cot j :

j ! |
?

&?

d|1

2?
} } } |

?

&?

d|j

2? \ `
j

n=1

1
sinh #n+

_\ `
1�i<k� j

hik +
2

\ `
j

n=1

xn+
M

cos \N :
j

n=1

|n+ (4.2)

The fugacity * is associated with the number of particles, and C(M, N )=
C(M, N; 1).

With these definitions the quadratic partial difference equations are

s2[C(M, N; *)2&C(M, N&1; *) C(M, N+1; *)]

+[C*(M, N; *)2&C*(M&1, N; *) C*(M+1, N; *)]=0 (4.3)

s$2[C(M, N; *)2&C(M&1, N; *) C(M+1, N; *)]

+[C*(M, N; *)2&C*(M, N&1; *) C*(M, N+1; *)]=0 (4.4)

ss$[C(M, N; *) C(M+1, N+1; *)&C(M, N+1; *) C(M+1, N; *)]

=C*(M, N; *) C*(M+1, N+1; *)

&C*(M, N+1; *) C*(M+1, N; *) (4.5)

The object C*(M, N; *) is the correlation function on the dual lattice and
is obtained from C(M, N; *) by replacing s$ with s* and s with s$*. Equa-
tion (4.5) holds for all M and N. When M=N=0 Eqs. (4.3) and (4.4)
must be replaced by

C*(1, 0; 1)=- 1+s2&sC(0, 1; 1) (4.6)

C*(0, 1; 1)=- 1+s$2&s$C(1, 0; 1) (4.7)

We do not know of *{1 versions of these equations.
These equations are nearly enough to determine all two-point func-

tions completely. For the isotropic expansion, all that is lacking is either
the high or the low temperature set of diagonal correlations (M=N ).
From either one of these the other can be obtained using equation (4.5)
with M=N. When *{1 we have used the integral formula (4.2) to com-
pute the diagonal correlation functions. For the rest of this section we focus
on the case *=1 where two superior methods for obtaining the diagonal
correlations are available. From the purely computational point of view the
difference equations of Jimbo and Miwa(16) are almost certainly the most
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efficient and to be preferred. However, from the point of view of under-
standing the analytical structure of the correlations the original Toeplitz
determinants(37�39) are better. We also find that for the numerical computa-
tions we have carried out so far the evaluation of the determinants is only
a small fraction of the total project time so efficiency is not yet an issue.

We will restrict ourselves in the following to the isotropic lattice. In
that case and for N>0, the diagonal correlation C(N, N ) is the determi-
nant of an N_N Toeplitz matrix with elements ai, j=ai& j that are the
integrals(39)

an=(2?)&1 |
?

0
d%(s&exp(&2i%)�s) exp(&2i%n)�- {2+sin2 % (4.8)

These integrals apply both above and below Tc and furthermore since
{ � &{ corresponds to s � 1�s, one can establish from the integral in (4.8)
the relations a&n&1({)=&an(&{). Explicit formulae for an for small n can
be given in terms of elliptic integrals E and K but these expressions are not
particularly enlightening and are not needed here. Rather we need the
series expansions of (4.8), either in s, 1�s or { depending on the application.

The series expansions in s and 1�s both for an and C(N, N ) are
completely straightforward with computer packages such as Maple that
automatically handle the multiple precision arithmetic required. Further-
more, these same packages can be set to treat the C(M, N ) in the recursion
formulae (4.3)�(4.5) as series and thus very little programming is necessary
to generate the susceptibility. Admittedly, some steps need to be taken to
conserve time and�or memory resources but this is very hardware depen-
dent and will not be described here. What is worth noting, however, is that
for a series to order N the recursion formulae require O(N 2) multiplica-
tions of series of length N and thus in a naive implementation, O(N 4) mul-
tiplications. Since the word length grows linearly with N the algorithm has
complexity of at most O(N 6). There are more efficient ways to multiply
long series and numbers with a large number of digits(40) but we have not
found it necessary to explore these options.

Timing proportional to N 6 is observed in practice, in our implementa-
tion of the recursion in Maple. We have generated high-temperature series
of order 323 and low-temperature series of order 646 for the isotropic
susceptibility. The entire calculation took 123 hours on a 500MHz DEC
Alpha with 21164 processor running Maple V version 5.1. We have also
obtained shorter anisotropic series in this way (either the nearest off-
diagonal correlation functions, or additional assumptions are needed). As
lattice anisotropy is a marginal operator, we hope that an extension of this
calculation will be very revealing.
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The series in { is most easily obtained by expressing the Toeplitz ele-
ment integral (4.8) in terms of hypergeometric functions. To show this
connection we start by writing

?an �2=- 1+{2 As&{Ac (4.9)

in terms of the real integrals

As=|
?�2

0
d% sin(%) sin(&%)�- {2+sin2 %

(4.10)

Ac=|
?�2

0
d% cos(%) cos(&%)�- {2+sin2 %

where &=2n+1. The required symmetry a(&&, {)=&a(&, &{) is explicit
in Eqs. (4.9) and (4.10) and by standard integration by parts manipulation
one can show that the cosine integral satisfies the differential equation

(1+{2)(d�d{) {(d�d{) Ac&&2{Ac=0 (4.11)

while the sine integral can be expressed as the derivative

As=&({�&)(d�d{) Ac (4.12)

Furthermore, a direct evaluation of the integral in (4.10) for small { yields
Ac=&l&+o({) with

l&=log( |{|�4)+�(&�2)�2+�(&&�2)�2&�(1�2) (4.13)

and this initial condition together with (4.11) completely determines Ac .
Since (4.11) can be recognized as the hypergeometric differential equation
in the variable z=&{2, we can immediately write the solution as(41)

Ac= &l&F(&�2, &&�2; 1; &{2)+ :
�

k=1

(&�2)k (&&�2)k �(k!)2 (&{2)k

_(�(k+1)&�(1)+�(&�2)�2&�(k+&�2)�2

+�(&&�2)�2&�(k&&�2)�2) (4.14)

On Taylor expansion we now obtain

?an �2=&&1+l&{+[&(l&&1�2)+&&1] {2�2+&2(l&&1) {3�4

+[&3(l&&5�4)&&&2&&1] {4�16

+[&4(l&&3�2)&4&2(l&&1�2)] {5�64+O({6) (4.15)

which can be extended as required.
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From the expression (4.15) one can conclude that C(N, N ), as an
N_N determinant, will contain logarithmic terms {q(log |{| ) p with q�p
and p�N��barring cancellation. However, there is cancellation and the
key qualitative features of the cancellation can be deduced simply by using
an alternative representation for the determinant. In particular, by systemati-
cally subtracting rows and columns one can show that an equivalent deter-
minant has matrix elements ai, j which are of the same integral form as the
an=ai, j in Eq. (4.8) except for the replacement of the exponential
exp(&2i%n) by the product exp(&i%n)(2 sin(%)) i+ j&2. The new matrix is
no longer of Toeplitz form but for our purposes here it is the better
representation because of the powers of sin(%) which have the effect of
shifting the log |{| singularity of the integrals to higher order in {. Indeed
one can show from the new integrals that the leading singular behavior of
each matrix element ai, j is proportional to {i+ j&1 log |{| and this is suf-
ficient to show that in the logarithmic terms {q(log |{| ) p in C(N, N ) one
must have q�p2. We have not attempted to pursue this argument to
deduce C(N, N ) analytically but rather have resorted to a numerical small
N evaluation of C(N, N ) using (4.15) and then fitting to obtain formulae
valid for general N. Our results for the leading logarithm term are sum-
marized by the expression

- s C(N, N, {)=C(N, N, {=0) :
�

p=0

4 p(log |{|+LN) p (N{�4) p2

_{ `
p&1

k=1

(N &2&k&2) p&k=
_[1+(1+2(N 2& p2)) {2�8+O({3)] (4.16)

in which we have used L to denote the discrete logarithm, i.e.,

LN=�(N+1)�2+�(N )�2&�(1)&log(4) (4.17)

The product factor in the first braces of (4.16) is to be understood as unity
for p<2 and in the final brace pair the coefficients of {q are polynomials
in N of degree �q. Furthermore, with the - s factor extracted explicitly as
in (4.16) these coefficients of {q vanish if q=2k+1 with k<p. The critical
correlation factor in (4.16) is

C(N, N, {=0)= `
N

n=1

12(n)�(1(n+1�2) 1(n&1�2)) (4.18)

and approaches A�N 1�4 as N � � where(6) log(A)=3`$(&1)+log(2)�12.
We have used (4.16), extended or truncated to some order in {, as input
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to the quadratic recursion formulae to generate all correlation products
- s C(m, n) as series in { within an octant m�n�0, m+n�2N+1. While
most of our results are numerical, they are consistent with the assumption
that the structure observed on the diagonal remains true on the octant.
That is, if we define n=+N, 0�+�1 and set m+n=2N (even shell) or
m+n=2N+1 (odd shell) then on these even�odd shells for large N, the
correlations are of the form

- s Ce�o(+)=N &1�4 :
�

p=0

(log |{|+LN) p (N{�4) p2 A ( p)
e�o(+) (4.19)

where the A( p)
e�o(+) are still Taylor series in { as in (4.16) but with coef-

ficients that are now (possibly asymptotic) Laurent series in 1�N rather
than polynomial in N. The highest power of N multiplying {q remains N q.

Considerable care must be exercised in the numerical work since the
recursion formulae are unstable. A toy recursion relation of structure
similar to the ones we use in the Ising study illustrates this nicely. Let

C n
m+1=(2(C n

m)2&C n&1
m C n+1

m )�C n
m&1 (4.20)

which is to be applied to all possible n and iterated forward in m. The
recursion (4.20) has as a solution a constant, say M, but is susceptible to
a steady state growth of errors so that

Cn
mrM+=(&1)n :m (4.21)

is also a possible solution. On substituting (4.21) into (4.20) one finds the
growth constant : must satisfy :2&6:+1=0 so that

:=3+- 8, log10(:)=0.765 } } } (4.22)

This is very close to what we find in our numerical work and implies that
if we want some number of digits D that are accurate at the outer edge of
the octant on a shell specified by n+m=2N+1 we need to start with
digits D0rD+1.53N. In practice we have worked as high as N=146 with
D0=380 using the automatic multiple precision facility of Maple. In Sec-
tion 6.1 we use these results to calculate the ``short-distance'' (including
analytic background) terms in the susceptibility.

5. CONJECTURED SHORT-DISTANCE STRUCTURE

In this section we state some conjectures for the short distance
behavior of the *{1 model introduced in Section 4. We arrived at these
conjectures by inspection of series obtained from a combination of the
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Table I. Coefficients of the Series (1&k2)1�4 /̂( j)
iso �2 j. The Numbers in the

Tables Are the Coefficients of (- k�2)n Starting at n=j2 in the Upper
Left Corner and Reading Down and to the Right

j=1 1 76 1960 41888 825440 15542912
4 176 4256 88704 1724800 32209408
12 400 9184 187264 3597440 66665984
32 896 19712 394240 7490560 137826304

j=2 1 26 556 10956 206276 3772216
0 0 0 0 0 0
4 104 2224 43824 825104 15088864
0 0 0 0 0 0

j=3 1 16 247 4140 70128 1190728
0 4 188 4584 93456 1788648
0 20 536 11164 217124 4019068
4 84 1524 27884 500996 8857404

j=4 1 34 816 17032 330410 6133502
0 0 0 0 0 0
0 4 184 5528 137616 3080684
0 0 0 0 0 0

j=5 1 48 1463 36304 801661 16438116
0 4 228 7972 221532 5382792
0 0 28 1864 74112 2295212
0 4 248 9468 286404 7530952

j=6 1 70 2908 93600 2582208 64243876
0 0 0 0 0 0
0 4 324 15236 545744 16530604
0 0 0 0 0 0

j=7 1 96 5231 213136 7232113 216135776
0 0 4 456 28952 1353328
0 0 0 36 4408 298448
0 4 436 26588 1198004 44506752

j=8 1 126 8760 444740 18429842 661181352
0 0 0 0 0 0
0 0 4 584 46440 2666700
0 0 0 0 0 0

j=9 1 160 13839 858704 42821009 1823591632
0 0 4 708 67252 4553260
0 0 0 0 44 8552
0 0 4 728 70976 4924124

j=10 1 198 20888 1560492 92610504 4644898080
0 0 0 0 0 0
0 0 4 868 99812 8087916
0 0 0 0 0 0

j=11 1 240 30359 2692864 188045229 11006289872
0 0 0 4 1064 148424
0 0 0 0 0 52
0 0 4 1044 143020 13686020
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Table I. Continued

j=12 1 286 42756 4447860 361695338 24490780096
0 0 0 0 0 0
0 0 0 4 1256 205352
0 0 0 0 0 0

j=13 1 336 58631 7076256 663817077 51575531568
0 0 0 4 1444 270020
0 0 0 0 0 0
0 0 0 4 1464 277424

j=14 1 390 78584 10898664 1169440708 103475590040
0 0 0 0 0 0
0 0 0 4 1668 358612
0 0 0 0 0 0

integrals (4.2) and the difference equations (4.3)�(4.5). Our interest in this
model is motivated by several considerations. Firstly, it enables us to see
how the analytic structure of / evolves as successive contributions /̂(2j) or
/̂(2j+1) are added. Secondly, the correlation function C(M, N; *) for small
values of M and N may be required as initial conditions for certain series
generation algorithms. Thirdly, we hope that the presence of an additional
parameter which can be varied will provide some insight into the Ising
model itself. Finally, the deformations of the elliptic functions that appear
in our conjectures may be of intrinsic mathematical interest.

Following the lead of ref. 27 we make a change of variable from the
modulus, k, to the nome q. Examination of the j-particle contributions to
the isotropic susceptibility and two-point functions reveals that there is
much regular structure. We arrive at exact conjectures for C� ( j)(0, 0),
C� ( j)(1, 0), C� ( j)(1, 1), C� ( j)(2, 0) and C� ( j)(2, 1) as functions of j and q. These
provide the first terms in the short distance expansion of the susceptibility.

5.1. q-Series in the Ising Susceptibility

Although more complete results have been obtained for the correlation
functions, we will demonstrate the method by which we derived our conjec-
tures using the susceptibility as an example. To make our observations
more concrete, we reproduce tables of series coefficients for (1&k2)1�4 /̂ ( j)

iso .
As an example of how to interpret the table, we read (1&k2)1�4 /̂(3)

iso =
8(k9�2�29+4k6�212+16k13�2�213+4k7�214+20k15�2�215+84k8�216+ } } } ).

Inspecting Table I, we make the conjecture that the series can be
sensibly decomposed as
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2 j (- k�2) j2
[(1+c0, 1k2+c0, 2 k4+ } } } )

+(- k�2) j (4+k+c1, 2 k2+c1, 3k3+ } } } )

+(- k�2)2j (c2, 0+c2, 1k+c2, 2k2+ } } } )+ } } } ] (5.1)
In fact, we observe that as j tends to larger and larger values, the first

row of coefficients tends towards the expansion in k of 2 jq j 2�4�%3(0, q).11

The first correction comes in at order q j( j+1)�4. Hence we make the change
of variable from k to q in /̂ ( j)

iso and divide the result by 2 jq j 2�4�%3(0, q). For
all j we obtain a series of the form 1+4q j�4+cq( j+1)�4+ } } } The sequence
of terms starting at order q j�4 appears again to be fitted by a recognizable
function of q, at least until contributions appear at order q2j�4 or q3j�4. Sub-
tracting this assumed product form yields a series whose first correction
enters at order q2j�4. The coefficients of the terms of orders lying between
q2j�4 and q3j�4 are not independent of j as was the case previously, but vary
linearly with j. The constant part has a product form, and the j-dependent
part may as well be we do not have sufficiently many terms to make a firm
conjecture. Likewise the terms between q3j�4 and q4j�4 depend quadratically
on j, and the correction at q4j�4 appears to vary as the fourth power of j.

From the long series we have produced, we have been able to conjec-
ture that

2& j (1&k2)1�4 /̂ ( j)
iso

=
q j 2�4

%3(0, q) _1+4q j�4 >�
n=1

1+qn&1�2

1+qn

+4q2j�4 \ `
�

n=1

(1&q2n&1)4 (1+qn&1�2)4+( j+1) 4q1�4�%2
2(0, q1�2)+

+4q3j�4( f (0)
3 (q)+( j+1)( j+2) f (2)

3 (q))+O[q4j�4]& (5.2)

where

f (0)
3 =1+6q1�2+26q+17q3�2&81q2&55q5�2+285q3 } } } (5.3)

f (2)
3 =1+q1�2&5q&4q3�2+15q2+10q5�2&39q3+ } } } (5.4)

These are consistent with the expressions for the correlation functions in
the following section. That is to say, summing the correlation functions
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given in the following subsection gives terms that agree, as far as they
should, with the above expression. Similarly, summing (5.2) over j gives a
series that agrees to the appropriate (low) order with the known expansion
for /iso .

5.2. q-Series in the Two-Point Functions

In this subsection we write down some conjectured results for the
short-distance correlation functions which we have derived empirically.
For these cases, unlike the susceptibility, the general correction term is
apparent from the series and we are able to formulate exact conjectures.
Let us define operators, 80 and 81 , which convert power series in z to
power series in q according to the rules

80 } :
�

n=0

cnzn= :
�

n=0

cnqn2�4 (5.5)

81 } :
�

n=0

cnzn= :
�

n=0

cnqn(n+1)�4 (5.6)

Then we conjecture that

2& j (1&k2)1�4 C� ( j)(0, 0)=
1

%3(0, q)
80

z j (1&z2)
(1+z2) j+1 (5.7)

2& j (1&k2)1�4 C� ( j)(1, 0)=
1

%3(0, q) \
2q1�8%3(0, q1�2)

%2(0, q1�2) +
1�2

81

z j (1&z)
(1+z2) j+1

(5.8)

2& j (1&k2)1�4 C� ( j)(1, 1)=
2( j+1)

%2(0, q) %2
3(0, q)

80

z j+1(1&z2)
(1+z2) j+2 (5.9)

2& j (1&k2)1�4 C� ( j)(2, 0)

=
1

q1�4%3(0, q) \
2q1�8%3(0, q1�2)

%2(0, q1�2) +
4�2

80

z j+1

(1+z2) j+1 (1&z2)

&
16

%3(0, q) %4
2(0, q1�2)

q1�4 d
dq1�4 _80

z j+2

(1+z2) j+2 (1&z2)&
&4 _ 1

%3(0, q)
+

%2(0, q)
2%2

3(0, q) %2(0, q4)
&

8
%3(0, q) %4

2(0, q1�2) %2(0, q4)

_q1�4 d
dq1�4 _80

z2

(1+z2)2 (1&z2)&& 80

z j+2

(1+z2) j+2 (1&z2)
(5.10)
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and

2& j (1&k2)1�4 C� ( j)(2, 1)

=
1

%3(0, q) \8q5�16 %2(0, q1�4)
%5

2(0, q1�2)
d

dq1�4 _81

z j+1(1+z)
(1+z2) j+1 (1&z2)&

+\81

z(1+z)
1&z4 +

&1

81

z j+1(1+z)
(1+z2) j+1 (1&z2)

__%4(0, q)&8q5�16 %2(0, q1�4)
%5

2(0, q1�2)
d

dq1�4 _81

z(1+z)
1&z4 &&+ (5.11)

As noted above, these are necessary, but not sufficient, for the genera-
tion of the j-particle contributions to the correlation functions, being some
of the initial conditions for the recurrences.

6. SCALING FORM OF THE SUSCEPTIBILITY

The main result in this section is a conjecture completely specifying the
analytic structure of the susceptibility / of the isotropic Ising model in the
vicinity of the critical point both in the neighborhood of the ferromagnetic
point s=1 and the anti-ferromagnetic point s=&1. The conjecture, con-
tained in Eqs. (1.15)�(1.18) is based on what we believe is overwhelming
numerical evidence that is obtained by disentangling the ``short-distance''
and ``scaling'' parts of / in a manner described below.

In Section 6.1 we give the assumptions and numerical procedures we
use to derive the ``short-distance'' part of / in (1.15) with the coefficients
listed in the Appendix. Then, in Section 6.2 we describe the ``short-dis-
tance'' subtraction and analysis on which the behavior of the scaling-
amplitude function F\ shown in (1.18) is based. Finally, in Section 6.3 we
outline our fitting programs to determine the coefficients in the functions
F\ . Since there are no confluent singularities in F\ whose amplitudes need
to be found, the fitting procedure is very well-conditioned and the coef-
ficients in the Appendix are as determined to an accuracy of up to 20 digits.

6.1. ``Short-Distance'' Term

That the ``short-distance'' contribution to / can be obtained from
numerical values of C(m, n) for small |m| and |n| relies on certain assump-
tions about the behavior of the expansion coefficients in Eq. (4.19). In par-
ticular, we assume that (4.19) remains valid up to N of the order 1�{ where
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it can, in principle, be matched term by term to a large distance expansion
that properly describes the roughly exponential exp(&N{) decay of cor-
relations as N � �. Explicit matching formed the basis of the previous
calculations of terms in the ``short-distance'' / (cf. ref. 20) but this becomes
extremely cumbersome at higher order. Our ability to go to high order here
rests on the fact that we dispense with such explicit matching and rely
instead on power counting to uniquely identify those terms that contribute
to the ``scaling'' and the ``short-distance'' parts of / separately. We believe
this is tantamount to the scaling argument that in the critical region there
is a single length scale proportional to 1�{& with &=1 and thus, in a way
to be made more precise below, we can deduce the power law of the large
distance contribution of any set of terms varying as N p by simply replacing
N p with 1�{ p. Terms whose variation is as a fractional power of { (with
possibly logarithmic multipliers) are discarded as assumed contributions to
the ``scaling'' part of /. Terms whose variation is predicted to be an integer
power of { (with possibly logarithmic multipliers) are assumed to be part
of the ``short-distance'' / and are treated more carefully.

To make the argument and assumptions more explicit we begin with
some definitions that will be useful also for the subsequent analysis. Let the
two dimensional sum (1.8) defining / be reduced to a one dimensional sum
by combining the contributions from all sites on the even and odd squares
|m|+|n|=2N, 2N+1 and then further combining these into sum and dif-
ference combinations which are necessary for separating the ferromagnetic
and anti-ferromagnetic contributions. That is we write

- s CN\
=:

k

C (k)
N\

{k=- s : (Ce(+)\Co(+)) (6.1)

where the first sum simply defines the coefficients C (k)
N\

while the second is
the actual lattice sum over the octant correlations defined by (4.19) and
extended by symmetry over the full square. The coefficients A (l, k)

N\
in the

expansion

C (k)
N\

= :
L

l=0

A (l, k)
N\

(log |{|+LN) l (6.2)

have the large N asymptotic expansions

A (l, k)
N, f = :

p=0

A (l, k, p)
f N 3�4+k& p, A (l, k)

N, af= :
p=0

A (l, k, p)
af N &1�4+k& p (6.3)

as assumed in (4.19) based on numerical evidence. The ferromagnetic and
anti-ferromagnetic cases have been treated separately in (6.3) to emphasize
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that shell subtraction in (6.1) reduces the leading power of N by unity. The
upper limit L on the logarithmic powers in (6.2) depends on k as discussed
in connection with Eq. (4.16) but its precise value is not needed in the
following discussion. We also introduce the partial sums

S (k)
N\

= :
N

n=0

C (k)
n\

= :
L

l=0

R (l, k)
N\

(log |{| ) l= :
L

l=0

(; (l, k)
\ +$R (l, k)

N\
)(log |{| ) l (6.4)

where the R (l, k)
N\

in the second equality in (6.4) are numerical coefficients
that are directly generated by the quadratic recursion relations and the
subsequent lattice summations. In the final equality in (6.4) these expan-
sion coefficients have been formally split into two terms. This formal
separation is to be understood in an asymptotic sense with ; (l, k)

\ a constant
that is the N independent part of R (l, k)

N\
as N � � and which we can under-

stand as an ``integration constant.'' The remainder $R (l, k)
N\

, we will show in
the case that l=L, has an asymptotic expansion like the A (l, k)

N\
in (6.2)

except for an extra factor of N from the summation. For l{L the $R (l, k)
N\

can be expressed as sums of such expansions with multiplying logarithmic
factors LN .

We now come to our key assumption. The partial sums in (6.4) in
most cases diverge as N � � because of the presence of large fractional
powers of N in the $R (l, k)

N\
. However, we assume that if the formal matching

of the short and large distance expansions for C(m, n) had been carried
out, these partial sums would in fact converge and furthermore the con-
tribution of each power of N term could be estimated by the replacement
N � 1�{. Since all the powers of N in $R (l, k)

N\
are fractional, the result is that

these terms contribute only to the ``scaling'' part of /. Thus the ``short-dis-
tance'' part of / comes entirely from the ``integration constant'' term ; (l, k)

\

in (6.4), and on explicitly reinserting the factors of - s and {k we get

Bf�af=:
k

:
L

l=0

; (l, k)
\ {k(log |{| ) l�- s= :

�

p=0

:
q

b ( p, q)
f�af {q(log |{| ) p (6.5)

at the ferromagnetic and anti-ferromagnetic points. The last equality in
(6.5) is Eq. (1.15) and follows simply by expanding - s in a series in {. The
rest of this section comprises a discussion of the numerical scheme we use
to isolate the ``integration constants'' efficiently.

A technical problem arises in that one must somehow isolate the con-
stant ; (l, k)

\ from an N-dependent sequence R (l, k)
N\

and this can be a very
unstable procedure if the R(l, k)

N\
are combinations involving logarithms.

Fortunately there are no logarithms in R (L, k)
N\

and one can iteratively
remove the logarithmic factors in the remaining R (l, k)

N\
by working in
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sequence from l=L, L&1,... to l=0. To understand precisely how to do
the subtractions we first relate the unknown N-dependent structure of the
R(l, k)

N\
to the known, or rather assumed, simple structure of the A (l, k)

N\
. From

the definition of S (k)
N\

as a partial sum it follows that S (k)
N\

&S (k)
N&1\

=C (k)
N\

and by comparing coefficients in Eqs. (6.4) and (6.2) we get

R(l, k)
N\

&R (l, k)
N&1\

= :
L

m=l \
m
l + A (m, k)

N\
(LN)m&l (6.6)

In the case that l=L there are no logarithmic factors on the right hand
side of (6.6) and the equation is just a discrete first order differential equa-
tion in N whose solution is an integration constant additive to an
asymptotic series of the same form as in (6.3) except for an extra power
of N. The easiest way to determine the ``integration constant'' ; (L, k)

\ is to
fit it together with unknown coefficients defining the asymptotic series part
to a sequence of R (L, k)

N\
. This is a stable numerical procedure, although if

k is large, ; (L, k)
\ is sub-dominant to many much larger terms and it is

essential to calculate in high precision. For example, we might start the
recursive calculation of R (L, k)

N\
as described in the previous section with

D0=380 digits, end with D=155 digits at N=146, and continue with this
number of digits in a 71_71 matrix inversion to obtain the ; (L, k)

\ of inter-
est while discarding the remaining 70 coefficients of the asymptotic series!
The results are slightly more accurate than the final answers, that are given
in the Appendix.

For l{L the presence of logarithmic factors on the right-hand side
of (6.6) makes fitting to R (l, k)

N\
impractical. Instead we define subtracted

functions

F (l, k)
N\

=R (l, k)
N\

+ :
L

m=l+1
\m

l + (R (m, k)
N\

&; (m, k)
\ )(&LN)m&l (6.7)

which we use as replacements for R (l, k)
N\

in all fitting procedures. That the
fitting functions F (l, k)

N\
will give the same ; (l, k)

\ is obvious since the added
terms in (6.7) all contain logarithmic factors and are thus not N-independent.
That the F (l, k)

N\
are logarithm free follows from

F (l, k)
N\

&F (l, k)
N&1\

=A (l, k)
N\

+ :
L

m=l+1
\m

l + (F (m, k)
N&1\

&; (m, k)
\ )(LN&1&LN)m&l

(6.8)

and an argument by induction starting from l=L. Equation (6.8) can be
verified using the definition (6.7) and the subtraction Eq. (6.6).
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To summarize, we obtain ; (l, k)
\ numerically by using (6.7) iteratively,

starting with l=L&1, to generate F (l, k)
N\

using procedures similar to that
described above for the initial F (L, k)

N\
which are just the R (L, k)

N\
. The results

are given in the Appendix.
Our arguments above are at best plausible and to provide a rigorous

proof justifying our numerical procedure we believe one would have to do
three things. First, one would have to show the C(m, n) expansion has the
form (4.19) we deduced on numerical grounds. Second, one would have to
show there exists a corresponding asymptotic expansion valid at large N.
Third, one must show both expansions have a sufficiently large domain of
validity that the matching we assumed could in fact be carried out to
arbitrarily high order. On the other hand, we have numerical evidence for
the validity of our procedure as described in the next section. The ``short-
distance'' terms we have calculated, when used in a series subtraction pro-
cess, leave a residual in high order series coefficients that is consistent with
the complete elimination of all ``short-distance'' terms, both singular and
analytic, to the O({14) we have worked. While the main intent of Sec-
tion 6.2 is actually quite different, it is highly unlikely that the cancellations
necessary to yield the expansion of the scaling-amplitude function F\ of
Eq. (1.18) in pure integer powers of { would have occurred had there been
an error, numerical or otherwise, in the results of this section.

We conclude this section with a toy model example to illustrate the
possible convergence properties of the short-distance expansion. The main
impediment to extending the calculation described above is that we do not
have simple analytical expressions for the { expansion of the C(M, N ) in
general. An exception is on the diagonal where we know, cf. Eq. (4.16), that
the coefficient of { p2

(log |{| ) p is

C ( p)
N =4 p& p2C(N, N, {=0) N p `

p&1

k=1

(1&N 2�k2) p&k (6.9)

and a simple expression for the asymptotic expansion of C(N, N, {=0) at
large N can be found in Au-Yang and Perk.(47) We can define the diagonal
partial sums S ( p)

N =�N
n=0 C ( p)

n and, as in the analysis described above, ask
for the short-distance coefficient b ( p)

diag which is the N independent part of
S ( p)

N in the limit N � �. This term b ( p)
diag could be viewed as a partial con-

tribution to the short-distance terms of interest but since we do not know
what cancellations will occur when we include all C(M, N ), we prefer to
consider it only as a toy result that is suggestive for the convergence of the
short-distance terms with order p.

The term b ( p)
diag is also equal to the = independent part of

��
n=0 C ( p)

n e&=n in the limit = � 0. This latter expression is more convenient
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since we can add to it any term such as 1�(1&e&=) p2+3�4&k for integer k
without contributing to any = independent term. If we expand such terms
in series in e&=, we obtain as an equivalent sum

:
�

n=0
_C ( p)

n & :
K

k=0

gk1(n+ p2+3�4&k)�n!& e&=n (6.10)

Now choose the gk in (6.10) such that the divergent terms in the
asymptotic n expansion of C ( p)

n cancel the divergent terms in the Gamma
functions. Then the n sum becomes convergent even with ==0. With the
cancellation extended to include also some slowly decaying terms in n, thus
requiring K>p2, one obtains the explicit formula

b ( p)
diag= :

�

n=0
_C ( p)

n & :
K

k=0

gk1(n+ p2+3�4&k)�n!& (6.11)

which is very convenient for numerical work. We find the b ( p)
diag calculated

from (6.11) for p=1, 2,..., 20 are

&1.30_10&1, 4.29_10&4, 1.58_10&5, &9.12_10&9

&6.31_10&11, 8.31_10&14, 2.38_10&15, &3.73_10&17

&2.08_10&17, 1.18_10&17, 3.61_10&16, &1.78_10&14

&6.67_10&11, 5.80_10&7, 5.15_10&1, &1.44_10+6

&5.34_10+14, 8.13_10+23, 2.06_10+35, &2.70_10+47

(6.12)

The sequence in (6.12) clearly shows the asymptotic nature of the toy
expansion. Furthermore the magnitude of the terms is in semi-quantitative
agreement with 1( p2�2)�a p2�2 from Eq. (3.30). Thus while we cannot con-
clude that this will be how the short-distance susceptibility terms Bf�af in
(1.15) will behave, it is at least encouraging to note that there is no
evidence for any behavior more singular than that predicted by our natural
boundary analysis.

6.2. Series ``Proof'' of F\ Behavior

Any numerical analysis program to deduce functions such as the scaling-
amplitude functions F\ from their series expansions is in essence a fitting
routine and always presupposes a knowledge of the analytic structure of
the result. Although we have very little exact knowledge of F\ we do know
that the multiplier of |{|&7�4 in /(2) (cf. Eq. (1.13)) contains log |{| terms
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and there is numerical evidence(3) that this is true of the /(n) for n>2 also.
On the other hand, Gartenhaus and McCullough(22) found that the series
for / were consistent with the absence of logarithmic corrections in F+

through order {3 and this was subsequently confirmed for F& as well.(11)

Scaling arguments on the question of logarithmic corrections are necessarily
inconclusive because of the lack of information on amplitudes, some of
which may vanish. We know of no scaling argument that either definitely
requires the presence of logarithmic terms or can definitely exclude them.

The natural boundary arguments given in Section 3.2 preclude the
possibility that / has a convergent rather than asymptotic expansion about
{=0, but we know of no analytical argument that shows whether this
applies to both the ``scaling'' and ``short-distance'' terms or just to one or
the other.12 Neither could we distinguish the convergent from the asymptotic
expansions from the data we have. Although there are singularities in /
dense on the line &i�{�i, the singularities close to {=0 are extremely
weak and we have not detected any singularity closer to the ferromagnetic
{=0 point than that arising out of /̂(6) at I({)=- 7�4r0.66. Thus for all
practical (numerical) purposes we can ignore the possible asymptotic
nature of the ``scaling'' terms.

The possibility that the F\ might be expanded in a series in integer
powers of { can be confirmed numerically without evaluating any of the
coefficients in the expansion. The trick is to generate the series for the
susceptibilities divided by the factor (1&k2)1�4. Any term in F+ or F& that
is not a pure integer power law { p, p>1, will necessarily contribute to the
high order coefficients of the series. Of course, the leading two terms 1+{�2
in F\ , which occur as poles proportional to 1�{2 and 1�{ in the scaled /\ ,
will also contribute, but the amplitude of these terms is known and so their
contribution can be subtracted. Similarly, given the accurate ``short-dis-
tance'' amplitudes in the Appendix, the contribution of all ``short-distance''
terms can be similarly eliminated through order {14. We find that the
remaining high order series coefficients are plausibly consistent with the
``short-distance'' O({15) that has not been subtracted and thus that there is
no numerical evidence for any powers of { other than pure integers in the
scaling-amplitude functions F\ . The rest of this section gives details of the
analysis that is the basis for this conclusion while the following section
reports on our procedures for estimating the coefficients in the { expansions
of F\ .
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As outlined above, our search for possible terms other than those with
pure integer powers of { in the F\ involves the observation of the high
order series terms in the scaled and pole subtracted susceptibility functions

2/+=;&1/+�(1&s4)1�4&(2Kc - 2)7�4 C +
0 2&1�2�(1&s)2

(6.13)
2/&=;&1/&�(1&s&4)1�4&(2Kc - 2)7�4 C &

0 2 - 2 s2�(s2&1)2

= :
�

m=1

K &
2m s&2m

applicable for T>Tc and T<Tc respectively. Since the procedures for
T>Tc and T<Tc are not different in principle, we will restrict the discus-
sion below to the T<Tc case only.

To implement the ``short-distance'' subtraction we can restrict our-
selves to determining bn , the contribution to the coefficient of s&n arising
from the s&1=1 singularity in (1&s&4)&1�4 (log(&{)) p�- s.13 The con-
tribution from {q(1&s&4)&1�4 (log(&{)) p�- s follows trivially from bn by q
repetitions of the derivative operation D{bn=(bn+1&bn&1)�2 because of
the simple form {=(s&1&s)�2. Note also that the contribution from the
1�s=&1 singularity is identical except for an overall sign (&1)n and thus
simply requires that in the end we set all odd power amplitudes to zero and
double the even ones. To determine bn is a standard exercise in complex
variable contour integration; we deform the contour in an s&1 integral with
integrand sn+1�(2?i)(1&s&4)&1�4 (log(&{)) p�- s to surround the branch-
cut 1�s&1<� and in a final step set s&1=exp x. The result is

bn=?&1 |
�

0
dx exp(&nx)(2 sinh 2x)&1�4 I[exp(i?�4)(log sinh x&i?) p]

(6.14)

and although the integral (6.14) cannot in general be done in closed form,
expansions valid asymptotically for large n are easy to generate with com-
puter algebra packages such as Maple. Because our series are particularly
long these asymptotic expansions are essentially exact and are also very
convenient for the subsequent D{ differentiations.

It is also necessary to subtract and�or smooth out the contributions
from complex singularities on the circle |s&1|=1. The only significant ones
for the present calculation are those at s&1=\i and \exp(\i?�3). The
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subtractions of the leading contributions from the latter singularities aris-
ing from /̂(4) can be obtained directly from Eq. (28) in ref. 11. The result is

K &
2m � K &

2m+1536�(5005?)(4 - 2�(2m)!)[31�4 sin(2m?�3+?�4)[(&13�2)2m

+13�4(&15�2)2m+1265�1632(&17�2)2m&5365�384(&19�2)2m]

&3&1�4 cos(2m?�3+?�4)[5�2(&15�2)2m+75�8(&17�2)2m

+53321�20672(&19�2)2m]] (6.15)

where (z)n=1(z+n)�1(z) is a Pochhammer symbol.
We find that the further smoothing to give the remainder

R&
n =n1�2D4

bn&1�2(n4D4
a)3 n3K &

n (6.16)

is more than adequate. Here as in ref. 11 Da gn=(gn&1+ gn+1)�2 sup-
presses the contributions from s&1=\i while Db gn=(gn&2+ gn+ gn+2)�3
reduces what has not been subtracted by (6.15). Note that the smoothing
in Eq. (6.16) scales up the amplitude contributions from the singularities at
s&1=\1 by a factor n15.

We find that as we include higher and higher orders of the ``short-dis-
tance'' terms in the subtraction process the remainder amplitudes (6.16)
decrease in a smooth fashion. The amplitude R&

n we obtain after having
subtracted all terms through O({14) listed in the Appendix is, at n=600,
r&4.1_107 compared to r1.5_1043 one gets without pole subtraction
in (6.13). The residual is very reasonably the amplitude we would expect
from the O({15) terms and this has been confirmed by extending the ``short-
distance'' amplitude sequence in the Appendix by two terms using a crude
Pade� analysis. The result of this additional subtraction is to reduce R&

n

at n=600 to r(&1 to 1)_106. Analysis of the high temperature series
leads to a similar conclusion and also that the anti-ferromagnetic ``short-
distance'' terms in the Appendix represent the susceptibility at this point
completely with nothing left out.

Although our analysis does not ``prove'' the absence of powers of {
other than pure integers, we can put very stringent bounds on the
amplitudes of any possible singular terms. To make this comparison con-
crete, we suppose either of F\ contains the singular term Ap{ p log |{| and
for simplicity assume p integer. The contribution of this term to the
amplitude of the coefficient of sn for T>Tc or 1�sn for T<Tc in the high�
low temperature series expansion of (6.13) will be about Ap1( p&1)�n p

relative to the pole contribution and this is to be compared to the observed
amplitude we obtain after subtracting or smoothing away the known
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singularities as best we can. Our current results are the amplitude bounds

|Ap |<10&35300 p�1( p&1), T>Tc (6.17)

|Ap |<10&37600 p�1( p&1), T<Tc (6.18)

and these bounds essentially exclude any singularity with reasonable
amplitude, scaling as { p, for all p less than about 15.

6.3. F\ Coefficient Analysis

The task of determining F\ numerically is enormously simplified by
the a priori knowledge��strictly speaking a conjecture based on the numeri-
cal work of the last section��that F\ has an expansion in integral powers
of { near {=0. The absence of any confluent terms means that many dif-
ferent analyses can be used efficiently and we report here on two indepen-
dent calculations that give essentially identical results, thus again confirm-
ing the above conjecture. We have not seriously attempted to optimize our
analysis to give the most accurate numerical values possible and thus if it
ever becomes necessary one could almost certainly improve on our coef-
ficients as given in the Appendix.

One particular feature of the F\ expansion is worth noting here.
When the functions are scaled by - s the resulting series are numerically
consistent with series in even powers of { only. We have also noted a
similar simplifying role played by - s in the ``short-distance'' terms which
ultimately trace back to the Toeplitz determinant giving the diagonal
correlations C(N, N ) and to the quadratic recursion relations for general
C(M, N ).14 This result is not entirely unexpected. The singular part of the
free energy in zero field is an even function of { and the magnetization
M=(1&s&4)1�8 is s&1�4(&{)1�8 times an even function of {. Nonlinear
scaling field analysis then predicts, in the absence of corrections, that the
``scaling'' part of the susceptibility is s&1�2 |{| 7�4 times an even function of {.
Thus although our results for F\ are not consistent with the complete
absence of correction terms as discussed in Section 7 the prediction that
- s F\ is even in { does appear to be preserved to all orders.

To determine the coefficients in F\ we return to the unscaled /\ of
Eqs. (1.9) and (1.10) so that the terms in F\ are now singularities of
the function and contribute to the high order coefficients in the series.
The cases T<Tc and T>Tc are again similar; for T<Tc the unwanted
contributions from the ``short-distance'' part of / are subtracted as in the

831The Susceptibility of the Square Lattice Ising Model

14 See also the discussion of the quadratic recursion relations in Itzykson and Drouffe(18)

where rescaling by - s was used to simplify the scaling limit.



s-plane analysis described in Section 6.2. We use essentially the same
smoothing except for a 1�4 shift in power necessitated by the difference in
the singularity structure generated by the / rescaling of Section 6.2. That is,
we replace the remainder Eq. (6.16) by

R&
n =n1�2D4

bn&3�4(n4D4
a)3 n13�4K &

n (6.19)

and reduce the remainders R&
n in (6.19) by a least squares fitting to the

unknown F& coefficients in a procedure similar to that described in ref. 11.
Fitting intervals 2n>128 are typically used, and an FFT of the residuals
is very useful as a diagnostic to interpret the observed oscillations in the
residuals in terms of / singularities on the circle |s&1|=1. Because the
highest order terms in F& are not fixed (i.e., known) unlike the ``short-
distance'' terms, they tend to float and become effective amplitudes that
incorporate all the higher order effects including the ``short-distance'' con-
tributions that have not been subtracted. One technical result of this is that
the residuals we observe in (6.19) are some six orders of magnitude smaller
than the residuals we obtained in (6.16). In part this means that whereas
(6.16) was more than adequate as a smoothing operation, (6.19) is
marginally so. In addition, we observe here for the first time one of the
singularities from /̂(6), and using the cut information given in Eqs. (3.26)
and (3.27) can subtract it as

K &
2m � K &

2m+7815�(16?m̂35�2)(3 - 7�?2)3�4 [cos(2m̂ arccos(3�4)&?�8)

&215 - 7�(32m̂) sin(2m̂ arccos(3�4)&?�8)+O(1�m̂2)] (6.20)

where m̂=m&1�4.
A similar analysis has been carried out for T>Tc and our estimates

for the coefficients of F\ are given in the Appendix. The coefficients
through O({5) are unambiguously rational and have been fixed in the final
fittings. We have also set to zero all coefficients of odd powers of { in the
product - s F\ to O({15) but have allowed variable coefficients of {16, {17

and {18. These latter coefficients are, as expected, sensitive to whether we
stop the ``short-distance'' subtraction at O({14) or add in the additional
terms we have estimated by Pade� methods. The terms quoted in the
Appendix on the other hand are completely stable and thus we believe
reliable except possibly for the last digit.

When we relax the constraint of zero amplitude on individual odd {k

terms in - s F\ for integer 5�k�15 we find no significant improvement
in our fits and the resulting amplitudes are consistent with zero. For example,
when T<Tc , we find best fit coefficients of {k, k odd, that in absolute
magnitude are all less than r4_102k&33. For T>Tc the corresponding
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bounds can be as much as 100 times larger. But in both cases these bounds
are of a magnitude similar to what we estimate is the uncertainty in the
even order coefficients given in the Appendix. Thus we believe - s F\ even
in { to be an exact symmetry of the scaling-amplitude function.

An alternative analysis using the traditional variable v=tanh K was
also carried out. The natural boundary singularities at |s|=1 are mapped
to two circles |v\1|=- 2. In this expansion variable, the ferromagnetic
and anti-ferromagnetic critical points are at v=\(- 2&1) respectively,
and all other points on the two circles are farther away from the origin.
Hence the amplitudes of any other singularities are exponentially damped
and may be neglected in the analysis. The two analyses are in complete
agreement, but the more detailed s-plane analysis provides greater preci-
sion. For contemplated future analyses on other lattices, for which less is
known about the natural boundary singularities, it may be necessary to use
the v-plane analysis.

7. EXPECTED SCALING FORM OF THE SUSCEPTIBILITY

The basic scaling Ansatz for the singular part of the free-energy of the
two-dimensional Ising model is

fsing(gt , gh , [guj
])=& g2

t log | gt | Y� \(gh �| gt | yh�yt, [guj
| gt |&yj �yt])

+ g2
t Y\(gh �| gt | yh�yt, [guj

| gt |&yj �yt]) (7.1)

Here gt , gh , guj
are nonlinear scaling fields associated with the thermal field t,

the magnetic field h and the irrelevant fields [uj ]. The exponents yt , yh>0
are the thermal and magnetic exponents, and yj<0 are the irrelevant expo-
nents.15 The nonlinear scaling fields have expansions

gt= :
n�0

a2n(t, u) h2n, a0(0, u)=0

gh= :
n�0

b2n+1(t, u) h2n+1 (7.2)

guj
= :

n�0

c2n(t, u) h2n

where a2n , b2n+1 , c2n are smooth functions of t and u#[u j ].
If irrelevant fields are neglected, then the known zero field free energy

forces the equalities Y� +(0)=Y� &(0) and Y+(0)=Y&(0). Furthermore, the

833The Susceptibility of the Square Lattice Ising Model

15 For the two-dimensional Ising model, yt=1 and yh= 15
8 . This scaling Ansatz assumes only

a single resonance, between the identity and the energy. That the dimensions are integers
implies higher powers of log t. The surprise is the power of t at which higher powers of log t
enter. We thank Andrea Pelissetto for this clarification.



absence of logarithmic terms in the known magnetization and the divergent
part of the susceptibility requires the derivatives Y� $\(0) and Y� "\(0) to
vanish. Aharony and Fisher have conjectured, (25) almost certainly
correctly, that there are no logarithms multiplying the leading power law
divergence of all higher order field derivatives, in which case the Y� \ are
constants and analyticity on the critical isotherm for h{0 demands
Y� +=Y� & . With all these constraints built in, one can show the scaling
Ansatz (7.1) together with the field expansions (7.2) lead to

f (t, h=0)= &A(a0(t))2 log |a0(t)|+A0(t)

M(t<0, h=0)=Bb1(t) |a0(t)| ; (7.3)

;&1/\(t, h=0)=C\(b1(t))2 |a0(t)|&#&Ea2(t) a0(t) log |a0(t)|+D(t)

(7.4)

where A, B, C\ and E are constants and ;=1�8, #=7�4. The free energy
and magnetization Eqs. (7.3) determine the scaling field coefficients a0(t)
and b1(t) in (7.2). The presence of irrelevant scaling fields will be expected
to manifest themselves as deviations from the predicted form of the suscep-
tibility in (7.4) and�or as deviations from the unique prediction for the
coefficient of C\ .

Working as usual in the temperature variable {=(1�s&s)�2, we write
the predicted isotropic susceptibility from (7.4) as

;&1/\({, h=0)=C0\
(2Kc - 2)7�4 |{|&7�4 F(A6F)

&E0 �(2Kc - 2) { log |{| e0({)+D0({) (7.5)

where F(A6F) has already been given in Eq. (1.19). The ``short-distance''
contribution to / is here predicted to be given by the sum of the term
containing e0({), which arises as the mixing of the first two terms in the
expansion of gt in (7.2), and the analytic D0({).

The clear implication of Eq. (1.18), which shows the exact F\ is not
equal to F(A6F) is that irrelevant variables do play a role, and the multi-
pliers F\ represent the contribution of a number of scaling fields. While
there are suggestions in the literature for what these scaling fields might be16
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a search for some of them can be found in Blo� te and den Nijs.(43) Developments in our
understanding of the predictions of conformal field theory(44�46) lead us to believe that a vir-
tually complete explanation of corrections to scaling is obtainable, at least in principle. Our
analysis supports the conclusion of Barma and Fisher(42) that a correction-to-scaling term
with exponent %=4�3 is absent for the pure S=1�2 Ising model susceptibility considered
here. A mechanism in terms of generators of the energy family of the Virasoro algebra is
adduced by Caselle et al.(48) which gives rise to corrections at order {4 as observed.



it is unlikely that a unique identification could be made here since we are
dealing with a single isolated model with no free parameters to vary. A corre-
sponding analysis of the anisotropic square, and the triangular and
hexagonal lattices is likely to be enlightening in this regard. In ref. 49 a
study of difference equations is given, which implicitly outlines what is
needed to obtain the difference equations for the hexagonal and triangular
lattices. Additional material in this respect can also be found in ref. 50.

Note however that two different effects manifest themselves. At fourth order
in t (or, equivalently, {) scaling under the assumption of only two nonlinear
scaling fields breaks down, as evidenced by the difference between the coefficients
of {4 in Eqs. (1.18) and (1.19). However the corresponding high- and low-tem-
perature amplitudes still satisfy C +

0 �C&
0 =C+

j �C&
j for all j�5. For j>5, not

only does simple scaling fail to hold, but this equality also breaks down.
In the vicinity of the anti-ferromagnetic point in the high-temperature

phase, / is given exclusively by a ``short-distance'' term (1.16). Both Baf and
Bf from Eqs. (1.16) and (1.17) have expansions of the same form (1.15),
where the sum over p is restricted to p2�q. The coefficients in this expan-
sion can be determined from the short-distance correlations, and accurate
values for the expansions of Bf�af are given in the Appendix through O({14).

Again we note that there are terms in these ``short-distance'' functions
that are not of the Aharony and Fisher(24, 25) predicted form (7.5) based on
the absence of irrelevant variables.

We conclude with some speculative remarks. We cannot account
physically for terms of order tq(log |t| ) p, with p�2 and q�p2 in Bf ,
though we can see their origin mathematically, as discussed below
Eq. (4.15) and in footnote 15. While terms without logarithms and terms of
order tq(log |t| ) are expected, it is surprising (to us) that higher powers of
log |t| enter at the orders they do.

From conformal field theory, we have predictions for the irrelevant
exponents yj=&2, &4, &6,... . The fact that f (k)

+ = f (k)
& for k<6, though

f (k)
\ is not equal to the corresponding term in (1.19) for k=4, 5 suggests

the presence of only a single irrelevant operator contributing at order {4,
while the breakdown of high-low temperature symmetry in F\ at O({6)
suggests that more than one scaling operator couples to the lattice
magnetization at this order. A corresponding study to that reported here on
the triangular and honeycomb lattices, as well as on the anisotropic square
lattice is likely to be enlightening, and we hope to report on this in future.

APPENDIX

Here we list the expansion coefficients bp, q of the ``short-distance'' func-
tions Bf�af defined in (1.15) to O({14). The prefactor (- 1+{2+{)1�2=1�- s
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is understood to be expanded in a series in {. The leading constant and
coefficient of { log |{| have been reported previously.(21) The F\ series as
deduced in Section 6.3 are also given.

Bf=(- 1+{2+{)1�2

[&0.104133245093831026452160126860473433716236727314

&0.07436886975320708001995859169799500328047632028{

&0.0081447139091195995371542858655723893266057740{2

+0.004504107712232015926355020852986970591364528{3

+0.23961879425472180967837072450742931180586109{4

&0.0025399505953392329612162686121616238176205{5

&0.235288909669962491804066210882350821445764{6

+0.00191570753170091141409998516033460855797{7

+0.2143400966115384518711435705343125612378{8

&0.000883215706003328768611915486246075323{9

&0.19422062840719623752953468278129284679{10

+0.0000072335097772632765778839359680528{11

+0.177102037555467190714704023746648559{12

+0.0006888110962684387331860926084517{13

&0.16279253648974618861881216566686{14

+log |{|

(0.032352268477309406090656526721221666637730948898{

&0.0057755293796884630091487564013201013677152980{3

+0.059074961290345476578516085774495545264759330{4

+0.00305849157585622544005057759535229287938174{5

&0.0591662722088409053375931018028970139567911{6

&0.002067088393167114141650194740281136875636{7

+0.05424693070421409615112542698595864778919{8

836 Orrick et al.



+0.0010601025315498815900774416057541651837{9

&0.049300253157082567741316861339709144063{10

&0.00026830064161204203467706137637400358{11

+0.0450270525719569186212816103126356308{12

&0.00034332683257234543036792535081332{13

&0.041428586463052869356803144137620{14)

+(log |{| )2

(0.0093915698711458721317953318727075770649513654{4

&0.00869592546287923802156416645191752987912922{6

+0.007669481493104540876445085447422616885330{8

+0.00015428438297902275440225213783285077606{9

&0.0068054076881441249098452112921129773269{10

&0.000310520937481414524040686012525223279{11

+0.00611386643219454473116391019937140965{12

+0.000444606198235804033861443998682830{13

&0.0055571002151161308034896964314679{14)

+(log |{| )3

(&0.000015771569138451840480001012621461738178{9

+0.0000344282066208887553647799856857753380{11

&0.0000524427177487226174161583779149393{13)]

Baf=(- 1+{2+{)1�2

[0.1588665229609474882333592313690210116925239008416

+0.149566836938535905194382029433591286374711207262{

+0.01071222587983288033470968550659996768542030678{2

+0.0127530188399624019539552078052153609134674971{3

&0.011741188869656263932121387296300743594029390{4

&0.01406604087566590060620992322775625815515533{5
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+0.0131064546156258402249424759665220798848681{6

+0.012239696625538370626786005459530159711716{7

&0.01184019404541084813958321002995560636877{8

&0.0105854093023116661362507232392645147231{9

+0.010151560037724359473553197335905170854{10

+0.00908000411233119371610549453140718281{11

&0.0085420122287896456879459087815054030{12

&0.00771702694013238358077176900242074{13

+0.007123677682511208149032476379667{14

+log |{|

(&0.1553171901580110585934133538932734529992121600305{

+0.03206714814586975221843437287457551882247161782{3

&0.0077168875724615093064542922101962689299768599{4

&0.015675211573817078943430169665269657287132910{5

&0.00028554245153720354627897919087710530890677{6

+0.0096072545027321808179041903535130201897217{7

+0.004835406420625092236673413378307375358908{8

&0.00606499034448050751379194815071149626812{9

&0.0073400150414474023562454611060746360875{10

+0.003910356521403913091050321141297009252{11

+0.00870842744568158003036434762719697635{12

&0.002697783010884752101384006121375890{13

&0.0094056230380765607719474925088649{14)

+(log |{| )2

(0.01153371437882328027949011442761203640684043805{4

&0.011311734920691560067535056532207842716405684{6

+0.0100457687111988577404299867962466051265974{8

838 Orrick et al.



&0.000475698571097159420906450182271928179428{9

&0.00878397202228689639470985683437717938463{10

+0.0011571801729636538264100914359800686355{11

+0.007680651109512704070606639646988801296{12

&0.0018650912616201532939412831153215046{13

&0.00674470189451526288478200059343432{14)

+(log |{| )3

(0.0000578997194764877297760067221144062249541{9

&0.00016991508824012890240796446744935908812{11

+0.00032664884687465587957270016883093909{13)]

F+=1+{�2+5{2�8+3{3�16&23{4�384&35{5�768

&0.1329693327418753330{6&0.05899768720427100{7

+0.121586869804903{8+0.0766007994119{9

&0.10751871874{10&0.078346589{11+0.0960583{12+0.07592{13

&0.087{14&0.1{15+ } } }

=(- 1+{2+{)1�2 (1+{2�2&{4�12&0.1235292285752086663{6

+0.136610949809095{8&0.13043897213{10+0.1215129{12

&0.113{14+ } } } )

F&=1+{�2+5{2�8+3{3�16&23{4�384&35{5�768

&6.330746944662603289734{6

&3.1578864931646349782{7+5.46225118896595954{8

+3.521655160482472{9

&4.6602157191837{10&3.40963923001{11+4.055875878{12

+3.2008085{13&3.59746{14&2.985{15+ } } }

=(- 1+{2+{)1�2 (1+{2�2&{4�12&6.321306840495936623067{6

+6.25199747046024329{8&5.6896599756180{10+5.142218271{12

&4.67472{14+ } } } )
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The last digit in each term above may not be reliable. For completeness we
give also the leading susceptibility amplitudes evaluated to higher accuracy
than reported in ref. 3:

C+
0 =1.000815260440212647119476363047210236937534925597789

_(2Kc - 2)&7�4
- 2

C&
0 =1.000960328725262189480934955172097320572505951770117

_(2Kc - 2)&7�4
- 2�(12?)
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